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Numerically stable algorithm for discrete-ordinate-method 
radiative transfer in multiple scattering and 
emitting layered media 

Knut Stamnes, SGhee Tsay, Warren Wiscombe, and Kolf Jayaweera 

We summarize an advanced, thoroughly documented, and quite general purpose discrete ordinate algorithm 

for time-independent transfer calculations in vertically inhomogeneous, nonisothermal, plane-parallel me- 

dia. Atmospheric applications ranging from the UV to the radar region of the electromagnetic spectrum are 

possible. The physical processes included are thermal emission, scattering, absorption, and bidirectional 
reflection and emission at the lower boundary. The medium may be forced at the top boundary by parallel or 
diffuse radiation and by internal and boundary thermal sources as well. We provide a brief account of the 
theoretical basis as well as a discussion of the numerical implementation of the theory. The recent advances 
made by ourselves and our collaborators-advances in both formulation and numerical solution-are all 

incorporated in the algorithm. Prominent among these advances are the complete conquest of two ill- 
conditioning problems which afflicted all previous discrete ordinate implementations: (1) the computation 
of eigenvalues and eigenvectors and (2) the inversion of the matrix determining the constants of integration. 

Copies of the FORTRAN program on microcomputer diskettes are available for interested users. 

I. Introduction 

The discrete ordinate method for radiative transfer 
is commonly ascribed to Chandrasekhar.l Computer 
implementations of that method were, however, 
plagued by numerical difficulties2 to such an extent 
that researchers made little use of it. The purpose of 
this paper is to alert the community to a new numerical 
implementation of the discrete ordinate method for 
vertically inhomogeneous layered media which is free 
of these difficulties and to give a summary of its equa- 
tions and its various advanced features. The resulting 
computer code represents the culmination of years of 
effort3-g on the part of ourselves and our collaborators 
to make it the finest algorithm available. Our intent is 
that the code be so well documented, so versatile, and 
so error-free that other researchers can easily and safe- 
ly use it both in data analysis and as a component of 
large models. 
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The problem to be solved is the transfer of mono- 
chromatic radiation in a scattering, absorbing, and 
emitting plane-parallel medium with a specified bidir- 
ectional reflectivity at the lower boundary. Section II 
summarizes the equations and boundary conditions. 
Section III discusses the numerical implementation of 
the theory, in particular, (a) how to compute eigenva- 
lues and eigenvectors reliably and efficiently and (b) 
how to avoid fatal overflows and ill-conditioning in the 
matrix inversion needed to determine the constants of 
integration. Reference 9 provides a more detailed 
account as well as documentation, test problems, and a 
listing of the FORTRAN code. 

II. Theory 

A. Basic Equations 

The purpose of this section is to present the basic 
radiative transfer formulas with a minimum of defini- 
tion and explanation to establish notation and conven- 
tions. (For more comprehensive discussions of the 
subject, the reader is referred to textbookslJO and re- 
view articles.ll-15) 

The equation describing the transfer of monochro- 
matic radiation at frequency Y through a plane-parallel 
medium is given by1 
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where u~(T,,&) is the specific intensity along direction 
~,4 at optical depth T, measured perpendicular to the 
surface of the medium (4 is the azimuthal angle, and p 
is the cosine of the polar angle). S, is the source 
function given by 

ddP,(T,,wP;/AP’) 

x u,(w.h#O + Q,hw#4, (2) 

T2 7: = T* 

where ~“(7,) is the single-scattering albedo, and 
PV(7,,p,$;$,@) is the phase function. For thermal 
emission in local thermodynamic equilibrium (LTE), 
the source term QV is 

@he-l) (7,) = [ 1 - W”(7,)1~,[m”)], (3) 

T, - 7:=~~ 

Emlttmg and reflecting lower boundary 

Fig. 1. Schematic illustration of a multilayered medium. 

where B,( 2’) is the Planck function at frequency Y and 
temperature 2’. If the usual diffuse-direct distinction 
is made (Ref. 1, p. 22), so that uV in Eqs. (1) and (2) 
describes the diffuse radiation only, then for a parallel 
beam incident in direction po,$o on a nonemitting me- 
dium, 

the direction vectors before and after scattering. So- 
lutions to Eq. (6) give the azimuthal components, and 
then Eq. (5) gives the complete azimuthal dependence 
of the intensity. [When there is no beam source, the 
sum in Eq. (5) reduces to the m = 0 term, and ~0, ~$0 are 
irrelevant.] 

@beam) ~,(7,& 
4a Pu(7,,~,4;-~o,40) exd-7,ho), (4) (vv#4 = ___ 

where &o is the incident flux. We take 

B. Discrete Ordinate Approximation-Matrix Formulation 

The discrete ordinate approximation to (6) can be 
written3y4 

__ 

Q,(T,,w#J) = Q, (therma1) (7,) + QLbeam) (T,,/A,c#J). 

(Many radiative transfer models consider one or the 
other source term but not both.) 

To simplify the notation we omit the Y subscript in 
the following. By expanding the phase function P(7, 
co&) in a series of 2N Legendre polynomials and the 
intensity in a Fourier cosine series,ltg 

2N-1 

47,wb) = 1 Urn(T,P) cosm(4, - 4), (5) 

m=O 

we find that Eqs. (1) and (2) are replaced by 2N inde- 
pendent equations (one for each Fourier component) 

P 
l dUm(TG) - Um(T p) _ 

dr 
, Dm(7,CC,~‘)Um(7,CL’)d~’ - Qm(7,pL) (64 

where 

(m = 0,1,2,. . . ,2N - l), 

2N- 1 

Drn(7,p,p’) = T c (21 + a!yw~(P)~(C’~ 

l=m 

Qm(~,d = X~(T,P) exp(--T/cLo) + 6m0Q(therma1)(~), 

(6b) 

(64 

2N-1 

-qYT,P’) 
ow, 

= 4* (2 - a,,) 1 (-#+“(21+ 1) 
l=O 

x g~(dPy%wy%& (64 

6 
(1 - m)! 

m0 = 1 if m = 0 (0 otherwise), gT(T) = gl(7) (l+ ’ 

x um(v;.i) - Qm(vJ (i = fl,. . . fN), (74 

where pi and z.ui are quadrature points and weights. 
Since the single-scattering albedo w(7) and the 

phase function P(~,~,$;~‘,@‘) are functions of 7 in a 
vertically inhomogeneous medium, Eqs. (7) constitute 
(for each m) a system of 2iV coupled differential equa- 
tions with nonconstant coefficients for which analytic 
solutions do not exist. To obtain analytic solutions, 
the medium is assumed to consist of L adjacent homo- 
geneous layers in which the single-scattering albedo 
and the phase function are taken to be constant within 
each layer (but allowed to vary from layer to layer, see 
Fig. l), and the thermal source term is approximated 
by a polynomial in 7. For the time being, we shall 
consider a single homogeneous layer for which ~~-1 I 7 
,< rp. The T arguments of D and X will be omitted 
since D and X are by assumption independent of T in 
any one layer. We will also omit the p subscripts, 
which are implicit on all quantities, until later. 

For any layer in Fig. 1, then, we write Eq. (7) in 
matrix form as 

I I du+ 

Ub) 

&(T) = f I ; P@osB)P(qcosB)d coti. where3J6 
1 

Pl(cosB) is the Legendre polynomial, y(p) is the asso- 
U* = [Um(T,f/sti)] i = 1,. . . ,N, 

ciated Legendre polynomial, and 8 is the angle between Q - f = M-lQf, 
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Q* = Q”b,+,) i= ,... 1 ,N, reduced by a factor of 2 as follows.3 Breaking Eq. (8b) 
into 

M = (pi “VI ij = 1,. . . ,N, 

a = M-‘(D+W - I), 

p = M-lD-W, 

W = (Uris,) i,j = 1, . . . ,N, 

D+ = [Drn(pl,pj)] = [Dm(-~L,-~,)] i,j = 1,. . . ,N, 

D- = [Dm(-~i,~j)] = [O”(~i,-~,)] ij = 1, . . . ,N. 

C. Quadrature Rule 

The use of Gaussian quadrature is essential because 
it makes phase function renormalization unnecessary, 
i.e., 

i w,Do(T#,i#jLi) = i wiDo(T,Pi#j) = w(7), (7c) 
1=-N 1=-N 
If0 If0 

implying that energy is conserved in the computa- 
tion. l7 

The quadrature points and weights of the double- 
Gauss scheme adopted here satisfy p-j = -pj and w-j = 
wj. Double-Gauss simply refers to a quadrature rule 
suggested by Sykes18 in which the Gaussian formula is 
applied separately to the half-ranges -1 < p < 0 and 0 
< ~1 < 1. The main advantage of this double-Gauss 
scheme is that the quadrature points (in even orders) 
are distributed symmetrically around ]p] = 0.5 and 
clustered both toward 1~1 = 1 and p = 0, whereas in the 
Gaussian scheme for the complete range, -1 < p < 1, 
they are clustered toward p = fl. The clustering 
toward p = 0 will give superior results near the bound- 
aries where the intensity varies rapidly around p = 0. 
A half-range scheme is also preferred since the intensi- 
ty is discontinuous at the boundaries. Another advan- 
tage is that upward and downward fluxes and average 
intensities are obtained immediately without further 
approximations. 

D. Basic Solution 

Equation (7b) is a system of 2N-coupled ordinary 
differential equations with constant coefficients. 
These coupled equations are linear, and our goal is to 
uncouple them by using well-known methods of linear 
algebra. 

Seeking solutions to the homogeneous version (Q = 
0) of Eq. (7b) of the form 

u* = G* exp(-h), @a) 

we find 

@b) 

which is a standard algebraic eigenvalue problem of 
order 2N X 2N determining the eigenvalues k and the 
eigenvectors G*. 

Because of the special structure of the matrix in Eq. 
(8b), the eigenvalues occur in pairs (&k), and the order 
of the algebraic eigenvalue problem [Eq. (8b)] may be 

aG+ + fl G- = kG+, 

@G+ + aG- = - kG-, 

and then adding and subtracing these two equations, 
we find 

(a - 8) (G+ - G-) = k(G+ + G-), w 

(a + 8) (G+ + G-) = k(G+ - G-). (84 

Combining Eqs. (8~) and (8d), we obtain 

(a - 8) (a + 8) (G+ + G-) = k2(G+ + G-), (Se). 

which completes the reduction of the order. Follow- 
ing Stamnes and Swanson3 we solve Eq. (8e) to obtain 
eigenvalues and eigenvectors (G+ + G-). We then use 
Eq. (8d) to determine (G+ - G-). 

For beam sources Q(beam)(~,p) = X&L) exp(-T/PO) 
[Eq. (WI, ‘t 1 is easily verified that a particular solution 
of Eq. (7) is (omitting m superscript) 

For thermal sources the emitted radiation is isotropic, 
so that Qm = 0, m > 0, Q(T) = &O(T) = (1 - w)B(T). By 
approximating the Planck function for each layer by a 
polynomial in 7,3Jg i.e., 

K 

@b) 

we find that the particular solution may also be ex- 
pressed as a polynomial in 7: 

KM 

The coefficients Z&J and Y&) are readily deter- 
mined by solving systems of linear algebraic equations 
(see Refs. 3 and 9 for details). 

The general solution to Eq. (7a) consists of a linear 
combination, with coefficients Cj, of all the homoge- 
neous solutions plus the particular solutions for beam 
and thermal emission sources (omitting the m super- 
script): 

ub,pi) = 1 C,G,(pJ exp(-k]T) 
j=-N 

K 

+ &rnO c 
Yl(cLL)T'. (104 

l=O 

The kj and the Gj(pi) are the eigenvalues and eigenvec- 
tors obtained as described in Sec. III.A, the pi the 
quadrature angles, and the Cj the constants of integra- 
tion. We have for convenience included the beam 
solution in the sum by defining for j = 0 

(lob) 

k, = UPo. WC) 
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E. Boundary Conditions 

Below we shall limit ourselves to a linear-in-optical- 
depth dependence of the Planck function within each 
layer, since this will give sufficient accuracy for most 
cases of practical interest. We shall discuss the inclu- 
sion of boundary conditions in some detail, since a 
proper formulation of this aspect of the problem (in 
terms of the bidirectional reflectivity) is rarely dis- 
cussed in the open literature. 

In general, Eq. (1) must be solved subject to the 
boundary conditions 

U(T = o,- P74) = k(PL,@), (114 

47 = q,,+wa = g&d, (lib) 

where u, and ug are the intensities incident at the top 
and bottom boundaries, respectively, and TL is the 
total optical depth. 

Quite general boundary conditions can be accommo- 
dated in the discrete ordinate method. To be specific, 
we shall assume that the medium is illuminated from 
above by known diffuse radiation (incident parallel 
beams are treated as pseudosources) and that the bot- 
tom boundary has a known bidirectional reflectivity. 
Equation (llb) may now be rewritten as 

+ I IO exP(-~LI~oLo)Pd(~,~;-~o,~o), (12) 

where c(p) is the directional emissivity and Tg is the 
temperature of the bottom boundary; Pd(&&-p’,$‘) is 
the bidirectional reflectivity, and IO is the incident 
beam intensity at the upper boundary. Kirchhoff’s 
law 

2* 

&) +I dc#i 
i i 

1 

P&L,dmW)d&’ = 1 
a 0 0 

is applied to calculate the emissivity from the reflectiv- 
ity. Note that some authors include the (l/r) factor in 
Pd; we find our definition more useful, however, since 
when Pd is independent of angle it reduces to an albedo. 

Below we will assume that the bidirectional reflec- 
tivity is a function only of the angle 0 between the 
incident and the reflected radiation (i.e., there are no 
preferred directions at the lower boundary). Then it 
can be expanded in a series of 2N Legendre polynomi- 
als: 

2N-1 

where 

P&v#G-P’,44 = 1 (21 + l)hQ&N, 

I=0 

(134 

c0se = -/.qA’ + (1 - p2p (1 - pr2p cos(f$’ - 4). Wb) 

Using the addition theorem for spherical harmonics, 
we find 

2N- 1 

PdaJ;-d,~‘) = 1 p~h,-CL’) cosm(~’ - 41, (13c) 
m=O 

2N- 1 

Pdm(KP’) = t2 - aOm) 1 (zz + l)h~~(-P’)~(~), (14) 
l=m 

where 

h;“=h+=$, 

Pl(cOse)pd(cOse)dcOse. (15) 
1 

Substituting Eq. (13~) into Eq. (12) and using Eq. (5), 
we find that each Fourier component must satisfy the 
bottom boundary condition 

Urn(TL, +I) = $YP), (164 

where 

+ : 10 exph,hO) PZYP, -cL~). 

In a multilayered medium we must also require the 
intensity to be continuous across layer interfaces.7 
Thus Eq. (7) must satisfy boundary and continuity 
conditions as follows: 

i = 1,. . . ,N, (174 

ur(Tp,Pi) = u~++l(7p,Pi)9 i = fl,. . . ,&N, 

p = 1, . . . ,L - 1; 

uLmbL9+Pi) = uF(Pi)9 i = 1 N, , * * * 7 

(1%) 

(17c) 

where 

+ t1 + 4Jm) i wj~,Pdm(CLi,-~j)um(7~,-~j) 

j=l 

+ : 10 exp(-TJhJ Pdm(cCi,-PO)* 

Evaluation of the integral in Eq. (16b) by numerical 
quadrature as in Eq. (17d) requires a quadrature rule 
which integrates separately over the downward and 
upward directions. As noted previously, the double- 
Gauss rule adopted here satisfies this requirement. 

When discussing boundary conditions, it is conve- 
nient to write the discrete ordinate solution in the 
following form (kjp > 0 and k-jp = -kjp): 

up(T,pi) = i ICjpGjp(pi) exp(-kj,,T) 
j=l 

+ C-jpG-jp(pi) exp(+k,p~>l + R~(T,P~), 08) 

where the sum contains the homogeneous solution in- 
volving the unknown coefficients (the Cjp) to be deter- 
mined, and Rp(T,pi) is the particular solution given by 
[Eq. (lW1 

Rpb7Pi) = zO(Pi) exp(-T/kqJ + 6mO[yO(Pi) + ylTl* (19) 
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Insertion of Eq. (18) into Eqs. (17a)-( 17c) yields (omit- 
ting the m superscript) 
N 

1 [C,,G,,h,) + C-,&&-FJI 
j=l 

= kh.4 - ~pKkP,), i=l,...,N 

N 

c ICjpGJpb,) exd-k,,,Q 
J=l 

- LCJ,p+lGj,p+l(K) exd-kJ,~+,T,) 

+ C-j,p+lG-j,p+l(k) exP(k~,p+17p)ll 

= [Rp+l(7p9Pi) - Rp(Tp7Pl)19 i = fl, 

N 

c 
[CjLFjL(PL) eXP(--kJLTL) 

J=l 

+ C-jL’-jL(Pi) exdk,L7L)] 

= YbL,Pi), i = 1 N, ,***, 

where 

kN;p=l . . . 

Y(TI,YPt) = GOmt(P,)B(Tg) - RL(~LT+P,) 

+ 1 IO ev(-qhO) P~(IL~,--P~) 

N 
K-7 

.) . . . 

(20a) 

,L - 1 

(20b) 

cw 

+ t1 + ‘0,) 2 Pd(r,,-~J)Wj~JRL(‘L,-~J), t21a) 

J=l 

FjL(pi) = GjL(Fi) - (1 + 60,) 

@lb) 

Equations (20a)-(20c) constitute a (2N X L) X (2N X 
L) system of linear algebraic equations from which the 
2N X L unknown coefficients, the Cjp 0’ = fl, . . . ,&tN; 
p= l,... ,L) are determined. To solve this system of 
equations, we take advantage of the fact that the coef- 
ficient matrix is a (6N - 1) diagonal band matrix.7 

III. Numerical Implementation 

A. Computation of Eigenvalues and Eigenvectors 

Stamnes and Swanson3 obtained the eigenvalues 
and eigenvectors of Eq. (8e) using subroutines in EI- 
SPACK20 for a general real asymmetric matrix. Since 
such matrices may have complex eigenvalues/eigen- 
vectors, the EISPACK routines use complex arithmetic. 
Yet invariably the eigenvalues returned were purely 
real as they should be. 

As discussed by Stamnes et uZ.,~ the advantage of 
solving the eigenvalue problem involving the asym- 
metric matrix (ar - /3) (a! + 6) in Eq. (8e) is that only one 
matrix multiplication is necessary. Nakajima and Ta- 
naka16 showed that the eigenvalue problem can be 
reduced to finding eigenvalues and eigenvectors of the 
product of two symmetric matrices, one of which is 
positive definite. Stamnes et al? used the Cholesky 
decomposition of this positive definite matrix to con- 

vert the eigenvalue problem into one involving only 
one symmetric matrix. But the transformation to 
symmetric matrices (whose eigensolutions can be 
found faster and by using real arithmetic) and subse- 
quent solution procedures8J6 introduce matrix opera- 
tions in which the effect of rounding error can seriously 
degrade the results. Stamnes et ~1.~ compared the 
original Stamnes/Swanson method with the new pro- 
cedure based on the Cholesky decomposition and with 
Nakajima and Tanaka’s symmetrizing procedure. 
They summarize the outcome of these comparisons as 
follows: 

(1) In single precision the Stamnes/Swanson proce- 
dure is more accurate than the Cholesky procedure, 
which in turn is slightly more accurate than the Naka- 
jima/Tanaka procedure. 

(2) The Cholesky procedure is slightly faster than 
Nakajima/Tanaka’s, which is slightly faster than 
Stamnes/Swanson’s. 

Based on the findings, they decided to speed up the 
Stamnes/Swanson procedure since it is the most accu- 
rate. By eliminating complex arithmetic in the EI- 
SPACK subroutines, the speed became comparable 
with that of the Cholesky approach. We have adopted 
this faster algorithm in our code. 

B. Scaling Transformation 

As discussed by Stamnes and Conklin,7 to avoid 
numerical ill-conditioning, it is necessary to remove 
the positive exponentials in Eq. (20) (remember kjp > 0 
by convention). This is achieved by the scaling trans- 
formation7 

‘+jp = Q+jp eXP(kjpTp-l), (224 

‘-jp = Cmjp eXP(-kjpTp). Wb) 

Inserting Eqs. (22) in Eqs. (20) and solving for the Clip 
instead of the Cjp, we find that all the exponential 
terms in the coefficient matrix have the form 
eXp[-kjp(Tp - 7p-1)]; i.e., all the exponentials in the 
coefficient matrix have negative arguments (kjp > 0, 7p 

> 7p-l). Consequently, numerical ill-conditioning is 
avoided implying that our numerical scheme for find- 
ing the Cjp is unconditionally stable for arbitrary total 
optical depths and arbitrary individual layer thick- 
nesses. [To solve Eqs. (20) for the Cjp we use the 
LINPACK~~ routine SGBSL designed to solve a banded 
system of linear algebraic equations.] 

C. Scaled Solutions-Angular Distributions 

Since only the homogeneous solution is affected, we 
start by introducing the scaling transformation (22) 
into Eq. (18), i.e., 

N 

up(T,pi) = C (c,pGjpbl) exp[-kj,(T - up-I)] 
j=l 

+ c-jpG-Jp(pi) exp[-kJp(TTp - T)]). (23) 

Since kjp > 0 and 7p-1 5 7 I 7p, all exponentials in Eq. 
(23) have negative arguments as they should to avoid 
fatal overflows. 
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For a slab of thickness 7~, we may solve Eq. (1) 
formally to obtain (II > 0) 

47,+d = u(T~,+P) exp[-(TL - TIPI 

+ 
i 

” S(t,+p) exp[-(t - 7)/p] F 9 (244 
T 

u(~,-P) = 40,-d evt-7/d 

+ S(t,-p) exp[-(7 - t)/~l f f Wb) 

where we have again omitted the m superscript. 
These two equations show that if we know the source 
function S(t&), we can find the intensity at arbitrary 
angles by integrating the source function. The dis- 
crete ordinate solutions are used to derive explicit 
expressions for the source function, which can beinte- 
grated analytically. - 3 5yg This procedure is sometimes 
referred to as the iteration of the source-function tech- 
nique, although as pointed out by KourganofP2 and 
discussed in some detail by Stamnes,5 this procedure 
essentially amounts to an interpolation. 

In a multilayered medium we may now integrate Eq. 
(24a) layer by layer5 to obtain the following expression 
for the upward intensity at arbitrary 7 and II: 

up(7,+d = U(TL,+P) exp[-t7L - 7)/p] 

+ 6m0 [VOntP)F0nt7~PL) + bl$l,(T&)l 9 (254 

where the scaling given by Eqs. (22) has been incorpo- 
rated and 

E-jnb,+p) = exp[-tkJ,A7, - 67/d] - exp[-(7, - r)/p], (25b) 

FOn(7,+d = exp(-+/p) - exp[-(7n-7)/cL], (25~) 

Fln(T,+CL) = (T”-l+d exp(-6T/cL) 

with 

- trn + d exp[-(7, - 7)/p], (254 

67 = 7,-l - T for n > p and 6~ = 0 for n = p; 

AT,= r, - T,,-~ for n > p and Arp = rp - T for n = p, 

E+jnt79+P) = exp[-t-r,-, - 7)//J] 

- expl-[k,,(T, - 7,-l) - (7 - T,,/PlL @Se) 

forn>pand 

E+Jpt~,+~L) = exd-k,,(T - ~~-dl 

- expl-[k,,tr, - rpml) + (rp - 7)/~11. (25f) 

Similarly, we find that the downward intensity be- 
comes 

up(T,-pL) = u(O,-p) exp(-r/p) 

- G-,,h4 

C-J, 1 + kJnp 
KJn(7,-Co 

+ ‘+J,, 

G+,,(-P) 

1 - kJ,# 

E+Jnk-PL) 1 G,,t-cl) + ~~ 1 - ho &nh--PL) 
+ JmOIVOn(~)J’On(~,-~L) + blnFl,,t~,--~L)l , (26d 

where 

E+jn(T,-P) = exp[-(k,,AT, + 6~/p)] - exp[-(7 - 7n-1)/~] 

(26b) 

Fo~(T,-cL) = exp(-67/d - exp[-(7 - 7,-1)/p] 

hlb,-d = bn - CL) exp(-67/p) 

- (T,-~ - P) exp[-(7 - ~,-~)/p.], 

(26~) 

(264 

with 

67 = T - T, for n < p and 6~ = 0 for n = p, 

Am = T, - T,-~ for n < p 

and ATE = T - Tpel for n = p, 

KJn(T,-ll) = exp[-b - 4hl 

- exp(- [kJ,(T, - 7,-J + (7 - qp-l)lcLIL (26e) 

for n < p and 

- eXP(-[kJpbp - T~-~) + (T - Tp-l)l/.& CW 

We see that all exponentials in Eqs. (25b)-(25f) and 
(26b)-(26f) have negative arguments as they should. 
This ensures that fatal overflow errors are avoided in 
the computations. 

The Gj, terms and van(p) in Eqs. (25a) and (26a) are 
given by the following explicit expressions (omitting 
the n subscript): 

Wb) 

VfJtPL) = i wiDot~L,Pi)yOtP~) + t1 - w)bO; (274 
I=-N 
I #O 

where bo is defined in Eq. (9b). Formulas (27a)-(27c) 
clearly reveal the interpolatory nature of Eqs. (25) and 
(26). Although we have generally omitted the m su- 
perscript above, we have explicitly written Do in Eq. 
(27~) to indicate that thermal radiation contributes 
only to the azimuth-independent part of the intensity. 
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D. Computational Shortcut for Highly Absorbing Media 

For highly absorbing media without thermal emis- 
sion, very little radiation will reach levels for which the 
absorbing optical depth is greater than, say, 10. In 
such cases we ignore the medium below this depth and 
set the surface reflection to zero. This may result in 
enormous computation savings. For example, in an 
atmosphere with clouds it prevents unnecessary scat- 
tering computations at wavelengths where sunlight 
never reaches the clouds. 

E. Simplified Albedo and Transmissivity Computations 

By appealing to the reciprocity principle we may 
derive simple expressions for the plane albedo a(p) and 
the transmissivity t(p) of a vertically inhomogeneous 
plane-parallel medium lacking thermal sources. Thus 

(1) the plane albedo for a given angle of parallel 
incidence equals the azimuthally averaged reflected 
intensity uO(O,p) for isotropic illumination of unit in- 
tensity incident at the top boundary; 

(2) the transmissivity equals the azimuthally aver- 
aged transmitted intensity u”*(O,p) for isotropic illu- 
mination of unit intensity incident at the bottom 
boundary. 

Consequently, for an inhomogeneous medium the 
following duality relations apply? 

4d = uO(W; a*(/.4 = u”*(7L,-d; (2% 

w = ~“*@,P); t*(P) = uO(q,,-d; (29) 

where 7~ is to the optical thickness of the inhomogen- 
eous medium, and the asterisk refers to illumination 
from below. 

Equations (28) and (29) offer substantial computa- 
tional advantages when only albedo and transmissivity 
are required. The conventional procedure requires 
computation of the angular distribution of the diffuse 
intensity, which must then be integrated over angle to 
obtain the desired result. This necessitates the com- 
putation of a particular solution, which can be quite 
costly in an inhomogeneous (multilayered) medium, 
since such a solution is required for each layer and 
every direction of incidence considered. In contrast, 
by applying an isotropic boundary condition and using 
Eqs. (28) and (29), one may solve for all desired angles 
of parallel beam incidence simultaneously and avoid 
entirely the computation of a particular solution. 
(Details about the numerical implementation of this 
procedure are provided in Refs. 6 and 9.) 

IV. Summary 

We have described an advanced discrete ordinate 
algorithm for radiative transfer calculations, including 
multiple scattering, in vertically inhomogeneous non- 
isothermal plane-parallel media. This algorithm is 
the product of over seven years of development by 
ourselves and our collaborators. It has been designed 
to be as versatile and general as possible and should 
find applications from the UV through to the radar 
region of the electromagnetic spectrum. 
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The algorithm has the following important features: 
(1) It is unconditionally stable for an arbitrarily 

large number of quadrature angles (streams) and arbi- 
trarily large optical depths. 

(2) It can be forced by any combination of parallel 
beam or diffuse incidence and thermal sources in the 
medium and at the boundaries. 

(3) It allows for an arbitrary bidirectional reflectiv- 
ity at the lower boundary; directional emissivity is 
computed from this reflectivity. 

(4) It offers rapid computation of bulk albedo and 
transmissivity when thermal sources are absent. 

(5) Unlike the popular doubling method, comput- 
ing time for individual layers is independent of optical 
thickness. 

(6) Because the solution is analytic, and by using 
the iteration-of-the-source-function method, intensi- 
ties can be returned at arbitrary angles and optical 
depths, unrelated to the computational meshes for 
these quantities. 

(7) It has been thoroughly tested against a wide 
variety of published solutions. 

(8) It is thoroughly documented both in Ref. 9 and 
in the code itself (with extensive references to pub- 
lished equation numbers). 

Copies of the FORTRAN program are available from 
the third author on microcomputer diskettes (IBM or 
Macintosh). 
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